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1 Introduction

Neural networks can be powerful function approximators in machine learning and deep learning
methods, and can be trained to perform complex tasks using unstructured data. For example, Neural
Radiance Fields (NeRFs) allow for complex 3D scenes to be represented as simple fully-connected
networks that enable novel-view rendering [Mildenhall et al., 2020]. One major pitfall of these models,
however, is their “black box" nature, making it difficult to interpret their decisions or describe their
training dynamics. Kernel methods, on the other hand, are built on solid mathematical foundations
with well-understood training dynamics. This project will explore the connection between neural
networks and kernel methods through a specific construction known as the Neural Tangent Kernel
(NTK). We will then discuss an application of NTK theory that addresses an over-smoothing behavior
of neural networks by applying a nonlinear embedding of Fourier Features to the network’s inputs,
and investigate its effect on the task of image and video representations.

2 Related Works and Background

2.1 The Neural Tangent Kernel

NTKs were first introduced in Jacot et al. [2020] and represent a way to describe the training dynamics
of a neural network trained using gradient descent. Specifically, let Ω be a fully-connected neural
network with parameters θ and let f : Rm → Rn be the function represented by Ω. Then the Neural
Tangent Kernel function for two inputs xi,xj ∈ Rm is defined as

ΘΩ(xi,xj ; θ) = ⟨∇θf(xi; θ),∇θf(xj ; θ)⟩ (1)

Although the NTK function depends on the neural network parameters θ, it has been shown that
the NTK converges to a constant kernel function as the layer size of the network tends to infinity.
Assuming that θ was initialized according to a standard Gaussian distribution N , the NTK at the
infinite-width limit can be written as k(xi,xj) = Eθ∼NΘΩ(xi,xj ; θ).

How can we connect the NTK to the process of training neural networks? It turns out that gradient
descent with a neural network in the infinite-width limit is equivalent to “kernel descent" with the
NTK defined above. We consider an infinite-width MLP trained with an L2 loss with parameters θ
initialized in a way that ensures initial outputs near 0. Using the connection to kernel descent, the
exact outputs of the network after t iterations of gradient descent under these conditions given a set
of input points can be written in closed form. Thus, we are able to investigate the convergence of the
network’s training process.

Let K = QΛQT be the diagonalization of the kernel matrix K corresponding to the NTK, η be the
learning rate, and ŷ(t) be the output of the neural network after t training iterations for the training
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data with ground truth labels y. Borrowing analysis from Tancik et al. [2020], the error term after t
iterations of gradient descent can be approximated as

QT (ŷ(t) − y) ≈ −e−ηΛtQTy (2)

We can see that the exponential rate of decay for the error depends on the eigenvalues of the NTK
matrix K: larger eigenvalues correspond to a faster rate of convergence. However, NTK literature
such as in Bietti and Mairal [2019] shows that these eigenvalues decay rapidly during training, leading
to slow convergence to higher-frequency components of the target function. This is known as a
“spectral bias", and it leads to over-smoothed outputs from simple fully-connected networks.

2.2 Fourier Feature Networks

To combat the spectral bias problem for MLPs described above, Tancik et al. [2020] proposed Fourier
Feature Networks, which introduced a sinusoidal nonlinear embedding for inputs of an MLP. More
explicitly, the Fourier Feature embedding function γ : [0, 1]d → Rm is defined as

γ(v) = [a1 cos(2πb
T
1 v), a1 sin(2πb

T
1 v), . . . , am cos(2πbTmv), am sin(2πbTmv)] (3)

for some parameters {(ai, bi)}mi=1. This maps the input vector to an m-dimensional hypersphere.
The induced kernel is then

kγ(vi,vj) = γ(vi)
T γ(vj) =

m∑
j=1

a2j cos
(
2πbTj (vi − vj)

)
(4)

We observe that the kernel function is dependent only on the distance between the two inputs, making
it a stationary (translation-invariant) kernel. Modifying the base MLP with the Fourier Features
embedding corresponds to composing the NTK of the base MLP with the induced Fourier Features
kernel, giving it the same stationary property.

A more significant effect of this kernel composition is the addition of tunable components to the
NTK in the form of the ai and bi parameters in Equation 3. By setting these parameters, we can
control both the convergence rate and generalization ability of our network. Experiments in the paper
have shown that the best empirical results came from setting ai = 1 for 1 ≤ i ≤ m, and sampling
the bi parameters from a distribution rather than manual tuning. Furthermore, the convergence
and generalization properties of the MLP are mainly influenced by the variance (or scale) of the
distribution rather than the shape. Small-scale distributions converge more slowly to higher-frequency
components of the target function but are able to generalize better with smoother outputs. Large-scale
distributions on the other hand have faster convergence rates, but are more prone to overfitting due to
high-frequency aliasing effects. We explore the effects of adjusting the sampling distribution in the
following sections.

3 Methods

3.1 Low-Dimensional Image Representations

Taking inspiration from Tancik et al. [2020], we apply the Fourier Features idea to the 2D image
regression problem, which seeks to represent a single 2D image as a coordinate-based MLP that
takes in an input (x, y) ∈ R2 corresponding to pixel coordinates on the image and outputs RGB
values (R,G,B) ∈ R3 at that location. Rather than explicitly use an MLP, we build the network as a
series of convolutional layers with 1× 1 filters, which has the same effect as an MLP over each pixel
coordinate. Additionally, we add batch normalization [Ioffe and Szegedy, 2015] after each hidden
layer to speed up convergence.

3.2 Low-Dimensional Video Representations

We also extend the 2D image regression task to a 2D video regression task by adding an additional
dimension to the input (x, y, t) ∈ R3 representing time. The time inputs are normalized to be within
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[0, 1]. Aside from the different input dimension, the network architecture is the same as in the image
regression task (along with all the previously-described implementation adjustments). In this way, we
can explore the characteristics of network outputs for unseen temporal inputs, which can be seen as a
form of video interpolation.

4 Experimental Results

4.1 Image Reconstruction

We perform the image regression task on an image with an MLP with no Fourier Feature embedding
as well as MLPs with a Fourier Feature embedding of varying sampling distribution scales. Each
network was trained over 400 iterations with a learning rate of η = 0.0001. Figure 1 shows the
results of image regression for both Gaussian and Uniform sampling distributions.

Figure 1: Results for image regression using MLP with Fourier Features of varying sampling
distribution scales. Low, mid, and high-scale distributions correspond to σ = 1, 10, 100 respectively.

Looking at the image outputs, we observe little difference between the Uniform and Gaussian
parameter sampling distributions, corroborating the claim that the distribution shape does not play
a significant role in model behavior. We also observe the output of the standard MLP to be blurry
and unfocused, which represents the MLP failing to learn the high-frequency components of the
image. Across different distribution scales, we observe the clarity of the image improving as the scale
increases; the PSNR values in Figure 2 quantitatively illustrate this. The convergence rates as shown
in the training losses of Figure 2 also reflect predicted trends with respect to distribution scale, as
higher-scale distributions tend to converge at a faster rate.

4.2 Video Interpolation

Similar to the image regression task, we perform the video regression task with an MLP with no
Fourier Feature embedding as well as MLPs with a Fourier Feature embedding of varying sampling
distribution scales. Additionally, we withhold a subset of the video frames during training by skipping
every n frames in order to evaluate the generalization ability of the model on time steps unseen during
training. Each network was trained over 1000 iterations with a learning rate of η = 0.0001.

Experimentally, the resulting outputs on individual frames that were seen during training followed
many of the same trends in output image quality and training behavior across distribution scales
described for the image regression task. On interpolated frames, however, we observe that MLPs
with Fourier Feature embeddings of larger-scale (σ = 5) sampling distributions output noisier images
on time steps that are farther away from the nearest training frame. In contrast, an MLP with no
Fourier Feature embedding and MLPs with smaller-scale (σ = 0.5) sampling distributions output
interpolation frames that are more similar in quality to the outputs on frames the model was trained
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Figure 2: Training losses and PSNR values for the image regression task over 400 training iterations
for Fourier Feature networks with a Gaussian sampling distribution.

on. Figure 3 illustrates this phenomenon with a training set that keeps 10% of all frames (skipping
every 10 frames), with the model interpolating the other 90% of frames.

The resulting outputs of the model on interpolated frames are consistent with the predicted trends in
generalization ability with respect to distribution scale. Larger-scale sampling distributions lead to
an overfitting on the training frames and poor generalization to unseen frames, while smaller-scale
sampling distribution retains the smooth-output behavior of the base MLP to an extent, allowing
for more consistent transitions between training frames. Thus, tuning the parameters for a Fourier
Feature Network requires balancing convergence rate and output image quality with robustness and
generalization ability.

Figure 3: Outputs of video regression network on interpolated (unseen during training) video frames.
Distance is measured in number of frames. A negative/positive distance represents the interpolated
frame being before/after the nearest training frame.

5 Conclusion

We investigate the theoretical motivations behind applying Fourier Feature embeddings by analyzing
the model’s associated Neural Tangent Kernel. We apply the Fourier Feature Network model to
the previously-done image regression task, and extend the network’s functionality into the realm of
video regression. Through these two tasks, we empirically verify theoretical trends in convergence
speed and generalization ability with respect to scale of the sampling distribution for the Fourier
Feature embedding parameters. Evidently, Fourier Features can be very valuable in improving the
training and output behavior of regression-based neural networks, but one must be careful to adjust
the parameters of their model based on their desired task.
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