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1 Introduction

3D semantic reconstruction of a scene is a complex task composed of two parts: reconstruc-
tion, in which the 3D point cloud or mesh of the scene is recovered from a smetricsequence of
2D image observations, and segmentation, in which various objects within the 3D geometry
are identified and localized per point. Separately, these two tasks have been extensively
researched and understood. Open-source libraries such as COLMAP [1] are able to perform
per-frame camera pose estimation and dense reconstruction of a point cloud given an input
sequence of images observing a scene. On the other hand, 2D semantic segmentation is a
well-understood problem with data-driven methods such as Mask-RCNN [2] and more re-
cently Segment Anything (SAM) [3] from the FAIR team at Meta provide extremely precise
and robust segmentation masks for images of highly complex scenes.

However, there is yet to exist a universal framework for combining the reconstructed scene
mesh with the segmented 2D observations to produce a complete 3D semantic representation
of a given scene. Semantic reconstruction has many useful applications in virtual reality sys-
tems and mobile robotics setups including self-driving cars, so it is important that a robust
and accurate system for semantic reconstruction be developed.

To this end, we propose and explore a pipeline using neural radiance fields (NeRFs) for
rendering novel camera trajectories. The rendered views are combined with a method for
producing a temporally consistent semantic segmentation of the image sequence using SAM,
which is projected onto a 3D mesh of the scene through a majority vote mechanism. The code
implemented for our project along with additional results and visualizations outside of this re-
port can be found at https://github.umn.edu/diaz0329/CSCI5561-G6-Final-Project.

2 Related Works

2.1 Methods for Semantic Reconstruction

2.1.1 Structure from Motion and Multi-view Stereo

The baseline method for semantic reconstruction begins by applying Structure from Motion
(SfM) to a sequence of RGB images. Feature extraction and matching are used to determine
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camera poses and generate a sparse point cloud. Multi-view stereo (MVS) is then employed
to reconstruct surfaces and generate a dense point cloud. Various works offer different
implementations of this general pipeline. COLMAP is a well-known solution that improves
completeness through methods such as iterative bundle adjustment [1] and pixelwise view
selection [4]. Similar software such as Agisoft Metashape and 3DF Zephyr can achieve
superior accuracy to COLMAP in some contexts [5]. Our project utilizes COLMAP-SfM,
but aims to use NeRFs for dense reconstruction instead of MVS.

2.1.2 iMAP: Implicit Mapping and Positioning in Real-Time

iMAP is an MLP with 4 hidden layers of feature size 256, and two output heads that map
a 3D coordinate p = (x, y, z) to a colour and volume density value: Fθ(p) = (c, ρ). Instead
of trigonometric embedding, it uses the Gaussian positional embedding proposed in Fourier
Feature Networks [?] to lift the input 3D coordinate into n-dimensional space: sin(Bp),
with B an [n × 3] matrix sampled from a normal distribution with standard deviation σ.
Given a camera pose TWC and a pixel coordinate [u, v], camera pose is back-projected to an
normalised viewing direction and transformed it into world coordinates r = TWCK

−1[u, v],
where K is camera’s parameters. Then, N random samples (our random initialization of
weights) are taken along the ray pi = dir with corresponding depth values d1, , dN , and
query the network for a colour and volume density (ci, ρi) = Fθ(pi). Weight is the ray ter-
mination probability at distance δi = di+1 − di is defined as wi = oiΠ

j=1
i−1 (1 − oj), where

oi = 1− exp(−ρiδi) is an activation function. Depth and colour are calculated as mathemat-
ical expectations.

iMAP selects a number of pixels, based on loss statistics, from keyframes, selected based on
difference between them and previous keyframes in terms of information gain, and optimizes
a loss on them, a loss that consists of geometric and photometric losses, which we minimize
with respect to implicit scene network parameters θ which direct the sampling along the ray,
and camera poses.

In general, NeRFs are perfect for rendering 3D surfaces on pre-collected datasets and when
enough computational power is available, however, in some cases there arises a need to recon-
struct a surface without pre-training and on a device with a limited computational ability.
Here is where iMAP [6] comes to help: an MLP with a few fully connected layers, it uses
Fourier Features [7] for information encoding and requires no pre-training. It jointly opti-
mizes camera poses with rendering, although, for simplicity, it axes angles ϕ and θ of ray
looking on pixel. While it was supposed to be able to run on edge devices, computational
power of an average notebook is clearly not enough to run it. As iMAP experiments did not
give impressive and positive results, we switched to other methods.

2.2 NeRFs for Novel View Synthesis

Neural radiance fields (NeRFs) [8] have garnered much attention over the past few years
for its impressive ability to render realistic novel views of a scene encoded in a fairly simple

2



model such as a multilayer perceptron. Specifically, the model learns a volumetric scene
function (VSF) FΘ(x, y, z, θ, ϕ) over the parameters Θ, where (x, y, z) denotes the position
in 3D space of the point to render and (θ, ϕ) denotes the view angle of that point, and
outputs a volume density σ and radiance (R,G,B). Novel views are generated by sampling
VSF values along rays projected from the camera, and employing classical volume-rendering
techniques to compose the sampled values into the 2D render. Thus, the VSF serves as an
implicit 3D representation of the scene, since it can theoretically be queried to provide any
arbitrary 2D view of the scene.

2.2.1 NeRFusion

NeRFusion aims at overcoming the limitations poised by the MLP architecture of the NeRFs:
namely, their inability to capture large scens. It retreats to the capabilities of a TSDFs
(Truncated Signed Difference Function) and an RNN to produce per-voxel sparse neural
representations and local, in terms of a few neighboring frames, features of the objects as
rendered, resepctively. For each frame, local features are extracted by a 2D convolutional
network. To make local features volumes temporally consistent, the authors use a GRU with
a 3D to fuse them into a global representation, simultaneously pruning voxels whose features
contribute very little to the global rendered volume.

2.2.2 BARF

BARF stands for Bundle Adjusting Radiance fields, and rests upon the idea of combining
NeRFs with the technique of Bundle Adjustment (BA) and to apply a smooth mask on the
encoding at different frequency bands (from low to high) over the course of optimization,
which acts like a dynamic low-pass dynamic filter. Thus we are doing BA on many levels,
where each level of coarseness/fine-ness of encoding has an associated weight, and by ma-
nipulating these weights we can adjust the contribution of feature levels to the final outlook.
We also learn the weights of these frequency components to produce more realistic outlook.

2.3 Semantic Segmentation

Semantic segmentation of an image involves associating every pixel in an image to a class
or a label. It has various applications in object and scene recognition tasks. One of the
most well-known algorithms in segmentation is Mask-RCNN [2]. Mask-RCNN utilizes a
Feature-Pyramid Network and a ResNet101 backbone. It comes with a pre-trained model
for the COCO dataset. Another popular model is the Segment Anything Model (SAM)
[9] which boasts zero-shot instance segmentation on any given image, without needing any
pre-training.
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3 Methods

3.1 Novel View Rendering with NeRFs

Given a training sequence of image observations of a scene and a handcrafted camera trajec-
tory, we train a NeRF to learn an implicit scene representation off of the image observations,
and render novel views following the given camera trajectory for segmentation.

3.1.1 Training a NeRF

We train and evaluate our NeRFs on four scenes from the open-sourced Replica [10] dataset:
room 0, room 1, office 1, and office 2. A training set of 500 images is provided for each
scene, with the total training set having relatively thorough visual coverage of the objects
within. We utilize COLMAP [1] to estimate the camera pose for each training view, and use
the images and their corresponding camera poses as input to the NeRF model for training.

3.1.2 Camera Trajectories for Novel View Rendering

After the scene-specific NeRF is trained, we develop a camera trajectory, represented by a
sequence of camera transformations, along which novel views will be rendered. Our novel-
view camera trajectory is parameterized by (r, ϕ, n), and for 0 ≤ i < n, the ith camera
transformation along the trajectory is given by Ci =

[
Ri ti

]
, where

ti = t+
[
r cos

(
2π
ni

)
r sin

(
2π
ni

)
0
]T

Ri = Rγ

(
2π

ni
+

π

2

)
Rϕ(ϕ)

and Rγ and Rϕ are the camera yaw and pitch rotation matrices respectively. Here, t repre-
sents the average camera position over all training observations (corresponding to the center
of the scene), and r represents the average distance from all of the training observations
to the scene center, scaled by the parameter r. Essentially, the camera rotates around the
center of the scene in a circle of radius r looking down with an angle of ϕ, capturing a smooth
360◦ view of the scene. This simple trajectory allows for ample coverage of the scene, and
also allows for objects to shift very little between each frame, which will aid our strategy for
creating a temporally consistent 2D segmentation.

3.2 Semantic Segmentation with Segment Anything

We preferred to use SAM over Mask-RCNN as there is no need to pre-train Segment Anything
for zero-shot instance segmentation. However, since SAM only provides instance segmen-
tation, our class labels are inconsistent between multiple frames of our data. To overcome
this, we devised a simple threshold—mIoU heuristic to enforce temporal consistency between
multiple frames of segmentation. We make two assumptions: images are in sequentional or-
der and that the camera pose does not drastically change. Thanks to our NeRF approach,
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we are able to generate novel views in sequence to satisfy both of these assumptions.

Given an image t0 we use SAM to obtain n binary masks in the scene. This number is
determined by the automatic mask generator in SAM and can be influenced by some of the
hyperparameters. We obtain a segmentation map for t0 by constructing a 2D array with
segmentation ids assigned based on the output binary masks. We then use SAM to obtain
binary masks for image t1. We compare these binary masks to the segmentation map from t0
and assign the segmentation id that has the highest mIoU with the mask. To account for new
objects coming into the scene, we also compare the highest mIoU with a hyperparameter
called threshold. If the highest mIoU is not greater than the threshold, we consider this
binary masks to be a new object, assigning it a brand new segmentation id. Thus, objects
that overlap between frames above a certain threshold will maintain the same segmentation
id throughout the frames.

3.3 3D Semantic Reconstruction

Using SAM with our threshold-mIoU heuristic, we obtain segmentations for novel views
rendered by the NeRF. We then project these segmentations using the camera poses obtained
from NeRF onto the ground truth mesh. For each point in the mesh, we use a majority vote
it assign the point with the most frequent segmentation id from all the segmentations that
project to that point.

4 Experiments and Results

4.1 Comparison of NeRF Models

To compare the ability of various NeRF models to learn an implicit 3D representation of a
complex indoor scene, we conduct a quantitative and a qualitative experiment. From the
many NeRF variants out there in the current ecosystem, we elect to explore three: Instant-
NGP (INGP) [11] for its advertised lightning-fast training speed, Segment Anything in 3D
with NeRFs (SA3D) [3] due to its adaptation for larger-scale unbounded scenes, and Ten-
soRF [12] which serves as the NeRF backbone for SA3D.

Our quantitative experiment consists of evaluating the mean peak signal-to-noise ratio
(PSNR) across the first 100 views of the given training image sequence for the four afore-
mentioned Replica scenes. Results and a short analysis can be found in Table 1.

Our qualitative experiment consists of generating 250 novel views for each scene following
our novel-view camera trajectory and evaluating the reconstructed image quality. Results
and a short analysis can be found in Figure 1.

4.2 Semantic Segmentation of Image Sequence

We try out various thresholds for evaluating SAM with threshold-mIoU heuristic. Due to
the excessive run-time of SAM per image and the time constraints at hand, we only tested

5



room 0 room 1 office 1 office 2

INGP 23.09 25.52 27.16 20.26
SA3D 32.86 30.72 20.87 31.45
TensoRF 28.26 27.98 36.04 27.79

Table 1: Mean PSNR values for NeRF variants evaluated on four scenes over 100 views. In
alignment with qualitative observations, INGP performs the worst overall, while SA3D produces
the highest-quality renders in most of the scenes.

INGP

SA3D

TensoRF

room_0 room_1 office_1 office_2

Figure 1: Select renders of novel-view camera trajectory for NeRF variants evaluated on four
scenes. INGP produces blurry renders that sometimes make the scene unrecognizable, and thus
performs the least well qualitatively on all four scenes. SA3D and TensoRF produce renders of
comparable quality, but in spots where SA3D produces image tears in places that are unexplored
by the original camera, TensoRF compensates with additional noise in that region.

two thresholds, 0.3 and 0.1, on 20 images from our dataset. We determined that the 0.1
threshold is much more consistent and provides more leniency for smaller objects in the
frame. These results can be found in Figure 1.

We also compared the performance of our threshold-mIoU SAM with ground truth segmen-
tations. We ran our model on 20 images from all 8 scenes available in our dataset. We use
mIoU as our metric for accuracy. Keep in mind that the number of segments provided by
SAM is usually ten times higher than the number of objects in scene – most likely due to not
tuning SAM’s hyperparameters for our data. Thus, we find the most relevant mask to the
corresponding ground truth to perform mIoU on. We find the average mIoU to be around
58%.

One reason for lower accuracy could be due to oversegmentation of the objects. Another
reason is that SAM may not be consistent when used on the same frame twice.
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scene mIoU

office 0 53.6%
office 1 56.7%
office 2 49.6%
office 3 57.1%
office 4 60.4%
room 0 66.1%
room 1 66.1%
room 2 61.3%

Avg. mIoU 58.9%

Table 2: Average intersection over union for 20 images of 5 office and 3 room scenes. The average
of all these intersection over union is presented in the last row of the table.

Figure 2: Segmentations from office 0 scene using our threshold-mIoU SAM with a threshold of
0.3 (left column) and 0.1 (right column).

5 Conclusion

This work proposes applying NeRFs in conjunction with SfM to conduct 3D semantic recon-
struction. NeRFs produced implicit scene representations to accomplish 3D reconstruction.
SA3D provided the strongest performance among the three NeRF varieties evaluated. SAM
was used to perform 2D segmentation with moderate success in enforcing temporal consis-
tency across frames. Finally, we were not able to complete the projection of 2D segmentation
into 3D. Reconciling 3D reconstruction with 2D segmentation would be the first priority of
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future research. Tuning the parameters of SAM could also be explored to improve the accu-
racy of the 2D segmentation.

Some ways to improve the 2D segmentation is to look into other version of SAM such as inte-
grating threshold-mIoU with FastSAM[13] to reduce the amount of time needed for obtaining
segmentations. Another paper to explore is the DEVA: Track Anything [14] is a paper that
utilizes Grounded-SAM for providing temporal consistent semantic segmentations.

6 Summary of Contributions

Athreyi: I implemented threshold-mIoU SAM for semantic segmentation. I also conducted
literature reviews on other semantic segmentation models such as Mask RCNN, and DEVA:
Track Anything. I conducted qualitative and quantitative analysis for threshold-mIoU SAM.
This project allowed me to explore the differences and challenges in creating a temporal con-
sistent segmentation algorithm. I usually have projects where I am required to implement
an architecture from scratch, or use existing models. However, this project gave me the
opportunity to take an existing academic work and add functionality to it. I am definitely
interested in exploring how to improve the results I received from threshold-mIoU SAM.

Ryan: I got up and running and adapted the three main NeRF variants used in this project:
Instant-NGP, Segment Anything in 3D, and TensoRF. This involved setting up the appropri-
ate environments to run the code, as well as adapting the training and evaluation code for the
provided Replica dataset. I developed and implemented our novel-view camera trajectory for
rendering scenes from NeRF, and conducted the qualitative and quantitative comparisons
for the three NeRF variants. This project taught me many things when it came to working
with emerging technologies in computer vision and computer science in general. I learned a
lot about how NeRFs worked, how they could be used, and how they could be adapted to
fill specific niches or needs. I learned (or at least was reaffirmed) that projects won’t always
look the same from start to finish, and that one should adapt to the evolving state of the
project. Above all, I learned not just how to write code but to read it; it’s one of the most
important skills a computer scientist should have, and adapting the three main NeRF repos
has taught me a lot about how to do it.

Ivan: Literature review, extensive evaluation, testing and modification of NeRFs, includ-
ing, but not limited to: BARF, iMAP, NICE-SLAM (the NeRF part of it), vanilla NeRF.
Auxiliary, non-primary role in testing and adjusting SAM. I learned that planning and early
execution of the plan is one of the few most essential aspects of a success of a project, because
stumbling blocks are hard to predict. The hardest part of any project is not creation of the
tool, and not its conceptualization, but its integration and creating a pipeline with existing
data, removing platform incompatibilities, converting data between formats etc.

Arthur: I worked on adapting Segment Anything in 3D, which proved to be the most
effective way to train the neural radiance fields for semantic reconstruction. I conducted
much of the group’s literature review. This helped me provide insight into which avenues
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of research to pursue. I prepared the content and layout for most of our final presentation.
I learned how heavily academic research relies on previously published work. I already
understood this in the abstract, but I had grown accustomed to writing code from the
ground up in my previous computer science classes. This wasn’t feasible for a problem as
complex as semantic reconstruction. I had to shift my focus from figuring out how to solve
the problem independently to finding opportunities to improve existing solutions.
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